

Overview

Concrete Canoe

Recycled Concrete Aggregate Research

PCI Big Beam Competition

 Competing since 2004 – Two years after the program

inception

 Competed at Nationals once

 Hosted the Regional Competition once (Next time is April 2018!)

- 600 psi compressive strength
- 130 psi flexural strength
- 19-22 feet long
- ½ inch thick
- 55 pcf density

We've had some nice looking canoes...

We've had some nice looking canoes...

...and some ugly canoes

...and some broken canoes

...and some heavy canoes: 450+ lbs!

Made some innovations: prestress!

Wireless Strain Gauge System for Analysis

Made some innovations: SCC Mix!

We've made the paper.

We've made the paper – twice!

Students learn about

- Concrete mix design
- Problem solving
- Fundraising
- Motivating freshmen
- Professional presentations
- Working with a strict schedule
- Working with people!

Prestressed Concrete Institute and Big Beam

- PCI awarded MSU a 4-year grant for civil engineering and construction management
- Funds scholarships, courses, field trips, convention travel, etc.
- Partnered with Wells Concrete Products

Many trips to the US Bank Stadium site

Many Wells Concrete plant tours

Graduates

 highlighted in
 PCI's Ascent
 trade journal

- Big Beam Competition
- Design and build a 20-ft beam
- Must work with a precast partner
- The beam must break within a specific load range

Big Beam Competition

The Break....

Recycled Concrete Aggregate Research

Recycled Concrete Aggregate Research

- Review of literature and test sections
- Historical data and performance review
- Properties of concrete made with RCA
- Economic Analysis
- Recommendations

Review of Literature and Test Sections

- Snyder (1994 and 2006) reviewed RCA test sections constructed in 1980s in many states
- Most performed well. Problems in poorly performing pavements were attributed to
 - High amounts of mortar (new and recycled)
 - Low slab thickness
 - Long joint spacing
- Many other reviews and test sections, but no formal comparison of performance or service life

Review of Literature and Test Sections

Minnesota Test Sections (1980-1988)

- Equivalent sample size: about 212 miles each of RCA and non-RCA pavement
- Pavement constructed about the same time frame: 1980s and early 1990s
- Similar ADT levels
- Included all 212 miles of RCA pavements, and a random selection of 212 miles of remaining non-RCA pavements

Average RQI over time, RCA and non-RCA

Time to Reach RQI=2.5

Time to Reach RQI=2.5

	RCA	Non-RCA
Miles of Pavement	211.934	211.752
Number of observations	231	245
Minimum, yrs	8	5
Mean by miles, yrs	27	32
Standard deviation by miles, yrs	10	12

Time to Recorded Maintenance

	RCA	Non-RCA
Time to 1st Repair Treatment, yrs	16	18
Time to 2 nd Repair Treatment, yrs	21	23

Concrete Properties – Lab Testing

- Base Mix Design
 - -410 pcy Cement
 - 175 pcy Type C Fly Ash
 - 216 pcy Water (0.37 w/cm)
 - 1819 pcy Natural Coarse Aggregate
 - 1309 pcy Natural Fine Aggregate
 - HRWRA and AEA

Concrete Properties

- Mix Design Variations by Volume
 - 0% Coarse, 0% Fine RCA (Base Mix)
 - 50% Coarse, 0% Fine
 - 100% Coarse, 0% Fine
 - 50% Coarse, 50% Fine
 - 50% Coarse, 50% Fine (presoaked RCA)
 - 100% Coarse, 100% Fine
 - 100% Coarse, 100% Fine (presoaked RCA)
 - 50% Coarse, 50% Fine (No Fly Ash)
 - 100% Coarse, 100% Fine (No Fly Ash)

Concrete Properties

- Properties
 - Workability (Box Test)
 - Compressive Strength
 - Flexural Strength
 - Drying Shrinkage
 - Thermal Coefficient
 - Resistivity

Concrete Properties – Shrinkage

Concrete Properties – Flexural Strength

Concrete Properties – Thermal Coefficient

Economic Analysis / LCCA

- An extensive economic analysis was conducted
 - Different recycle replacement rates, w/cm, construction methods
 - Found that utilizing RCA can be cost-effective with appropriate precautions. The net value can be positive, along with less tangible benefits of using sustainable materials.

Conclusions

- Recycled fines seemed to be detrimental to all measured properties. This confirms results of other studies.
- More cement can make up for lower strength, but costs more up front
- More recycled aggregate can decrease up front costs, and the net benefits can be positive

Conclusions

Other considerations

- Stockpile management costs (multiple stockpiles for RCA and virgin aggregates)
- Accounting standards for additional, unused aggregates owned by producers or contractors
- Alternative beneficial uses (base layer, subgrade stabilization, shoulders, etc.).
 Perhaps this can be offset by replacing more expensive aggregates in the concrete

Recommendations

- Recycled Concrete Aggregate may be used in concrete
- Should consider all costs and benefits, and alternate uses
- LAR specification on RCA for concrete (AASHTO MP 16 suggests 50% loss)
- Trial batches should be conducted

