

Collaboration. Commitment. Confidence.™

Concrete Pavement Sustainability

Thomas Van Dam, Ph.D., P.E. Principal

Thursday, November 10, 2016

The Sustainability Triple Bottom Line

Why Must We Change?

Do We Still Need to Change?

- Politicians come and go, administrations change, but scientific facts remain
 - The Artic and Antarctica continual to melt, sea levels continue to rise, oceans are acidifying, and poison ivy is becoming more potent
- Sustainable practices are simply good engineering
 - Make sense economically, environmentally, and socially
- Likely a reduction in emphasis on GHGs

A Sustainable Pavement is an Aspirational Goal

- Achieve engineering objectives
- Preserve and ideally restore surrounding ecosystems
- Wisely use financial, human, and environmental resources
- Meet human needs such as health, safety, equity, employment, comfort, and happiness

Must Consider the Life-Cycle

Basic Pavement Sustainability Concepts to be Discussed Today

- Efficiency in design
- Wise use of materials
 - Local and recycled materials
 - Low environmental impact
 - Meet design requirements
- Consider the use-phase
- Long life
- Verification

Efficiency in Design

- Context sensitive
 - One size does not fit all
- Use "best" design methodology(ies)
 - Mechanistically-based?
- Consider the life cycle
- Embrace innovation
- Design to maintain
 - Preservation

"Your proposal is innovative. Unfortunately, we won't be able to use it because we've never tried something like that before."

Two-Lift Concrete Pavement

Deformation of the slab

- A Chilean design that is a hybrid between flexible and rigid pavement
 - Thin slabs and short joints
- Uses far less material than conventional concrete pavements

Materials and Mixtures

- Includes material extraction, processing, and transportation
 - Extraction to gate of the mixing plant
- Includes mixture design and proportioning, as well as mixing plant operations

Material Considerations

- Transporting materials has major environmental and social impacts
 - About 22 lbs of CO₂ from burning one gallon of diesel fuel
- Consider adoption of a zero-waste approach
- Must not compromise pavement longevity
- Reduce environmental impact of materials over the life cycle
 - Durability

Other Material Considerations

- Does longer life justify increased material transportation or production-related impacts?
- Does the pavement design make best use of lower impact materials?
- Are the impacts of transporting materials considered?
- Are specifications protecting the owner's interest or a barrier to innovation?
- Are there impacts on construction variability?

Aggregate Materials

- Largest share of mass and volume in a pavement structure
 - Have relatively low environmental footprint per unit mass
 - Consumed in large quantities
- Impact incurred in mining, processing, and transporting aggregates
 - Impact of transportation can be very large

Use of Recycled and Reclaimed Aggregates

- Reclaimed asphalt pavement (RAP)
- Recycled concrete aggregate (RCA)

Air-cooled blast furnace slag

On-site Recycling

- Reduced project (material) costs
- Reduced haul costs
- Reduced fuel consumption
- Reduced GHG emissions
- Reduced consumption of resources
- Reduced use of landfills

Example: The Illinois Tollway

- Committed to recycling 100% of existing pavements
- Two-lift composite concrete using RCWM in bottom lift
- In-place recycling of existing pavements
- Decisions are first economic, then environmental

Photo compliments of Steve Gillen, Illinois Tollway Authority

Hydraulic Cement and Concrete Mixtures

- Hydraulic cement concrete is humankinds most commonly used material after water
 - Approximately 1 yd³/person/year
- Large economic, environmental, and social impacts
 - 91.3 million tons of cement manufactured in the U.S. in 2015
 - In 2013, linked to just under 0.5% of US GHGs
- About 5 percent of cement is used in paved roads

	On-site Energy 10 ⁶ kJoules		On-site Energy %	CO ₂ Emissions 10 ⁶ tonne	CO ₂ Emissions %					
Raw Materials – Quarrying and Crushing										
Cement Materials		3,817	0.7%	0.36	0.3%					
Concrete Materials		14,287	2.6%	1.28	1.2%					
Cement Manufacturing										
Raw Grinding		8,346	1.5%	1.50	1.4%					
Kiln: fuels		410,464	74.0%	38.47	36.8%					
Reactions				48.35	46.3%					
Finish Milling		24,057	4.3%	4.32	4.1%					
Concrete Production										
Blending, Mixing		31,444	5.7%	5.65	5.4%					
Transportation		61,933	11.2%	4.53	4.3%					
Total		554,409	100%	104.50	100%					

Source: Energy and Emission Reduction Opportunities from the Cement Industry, U.S. Department of Energy.

Portland Cement in Concrete

Cement

Gravel Sand Water

Typical concrete at the gate: 0.26 tons CO₂ /yd³ concrete 0.24 tons CO₂ from portland cement

Sustainability is Enhanced by Using Less Portland Cement

- Reduce clinker in cementitious material
- Reduce cementitious content in concrete
 - From 564+ lbs/yd3 to 500 lbs/ft3 or less
 - Context sensitive
- Reduce concrete needed over the life cycle
 - Improved design thinner structures
 - Improved durability

Reducing Clinker Content in Cement

- Replace clinker with ground limestone and inorganic processing additions
 - ASTM C150 portland cement can have up to 5% limestone and 5% inorganic additions
 - ASTM C595 Type IL blended cement can have up to 15% limestone
- Replace clinker with supplementary cementitious materials (SCMs)
 - Added at concrete plant
 - Obtained as blended cement (ASTM C595)

Supplementary Cementitious Materials (SCMs)

- Fly ash
 - Collected from flue gases of coal burning power plant
- Slag cement
 - From iron blast furnace
- Natural pozzolan
 - Calcined clay, volcanic ash, ground pumice, etc.

Typical Replacement Levels for SCMs in Paving Concrete

Class F fly ash: 15% - 25%

Class C fly ash: 15% - 40%

• Slag: 25% - 50%

Note that replacement levels can be much higher in mass concrete placements, as high as 85%

ASTM C595 Blended Cements

- Produced by cement manufacturers
- Type IP(X), Type IS(X), Type IL(X), and Type IT (X)(Y)
 - Blended with pozzolan, slag cement, limestone or ternary blend
- Also designated as air entrained (A), moderate of high sulfate resistant (MS or HS), or moderate or low heat of hydration (MH or LH)

SCMs and CO₂ Emissions

From Tikalsky (2009), "Development of Performance Properties of Ternary Mixtures"

Reduce Cement By Increasing Aggregate Volume in Concrete

- Maximize aggregate content
 - Use of optimized aggregate grading for paving
- Ensure volume stability of aggregates
 - Porous aggregates require special handling
- Ensure aggregate durability
 - Freeze-thaw
 - Alkali-aggregate reactivity

Cement Content, SCMs, and CO₂

Example: The Illinois Tollway

- Committed to recycling 100% of concrete and asphalt pavements
- Two-lift composite concrete using coarse fractionated RAP and RCA in bottom lift
- In-place recycling of existing pavements into new base/subbase common
- Decisions are first economic, then environmental

Considering the Use Phase

- Traffic
 - Fuel efficiency is correlated to smoothness
 - Noise, pollution, and particulates
- Stormwater
 - Urban issues include flooding and stormwater treatment
- Other considerations include safety, aesthetics, urban heat island effect

IRI Trigger Values

Traffic group	Daily PCE of lane- segments range	Total lane- miles	Percentile of lane- mile	Optimal IRI triggering value (m/km, inch/mile in parentheses)	Annualized CO ₂ -e reductions (MMT)	Modified total cost- effectiveness (\$/tCO ₂ -e)
1	<2,517	12,068	<25		0	N/A
2	2,517 to 11,704	12,068	25~50	2.8 (177)	0.141	1,169
3	11,704 to 19,108	4,827	50~60	2.0 (127)	0.096	857
4	19,108 to 33,908	4,827	60~70	2.0 (127)	0.128	503
5	33,908 to 64,656	4,827	70~80	1.6 (101)	0.264	516
6	64,656 to 95,184	4,827	80~90	1.6 (101)	0.297	259
7	>95,184	4,827	90~100	1.6 (101)	0.45	104
Total					1.38	416

Verification

- Assessment tools should be used to evaluate the economic, environment, and social impacts of alternatives over the life cycle
- Tools are currently under development

"Trust but verify"

Assessing Sustainability

- Economics should be assessed using life cycle cost analysis (LCCA)
 - e.g. FHWA's RealCost
- Environmental and social impacts can be assessed using rating systems

 Greenroads Gree
 - Greenroads™, GreenLITES, INVEST
 - Gaining popularity
- Tools for environmental life cycle assessment (LCA) are emerging
 - EPDs are on the way
 - LCA guidance under development

Summary

- Sustainable practices are available at all phases of a pavement's life
- This is emerging field
- Sustainability requires a life cycle perspective
- Trade-offs are inevitable

"Towards Sustainable Pavements: A Reference Document"

- Guidelines for the design, construction, preservation and maintenance of sustainable pavements using asphalt and concrete materials
- Educate practitioners on how sustainability concepts can be incorporated into pavements
- Encourage adoption of sustainable practices

Questions?

Thomas Van Dam, Ph.D., P.E., FACI Principal

tvandam@ncenet.com 775-527-0690

Engineering & Environmental Services